Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38698947

ABSTRACT

Background: Inpatient behavioral health units (BHUs) had unique challenges in implementing interventions to mitigate coronavirus disease 2019 (COVID-19) transmission, in part due to socialization in BHU settings. The objective of this study was to identify the transmission routes and the efficacy of the mitigation strategies employed during a COVID-19 outbreak in an inpatient BHU during the Omicron surge from December 2021 to January 2022. Methods: An outbreak investigation was performed after identifying 2 COVID-19-positive BHU inpatients on December 16 and 20, 2021. Mitigation measures involved weekly point prevalence testing for all inpatients, healthcare workers (HCWs), and staff, followed by infection prevention mitigation measures and molecular surveillance. Whole-genome sequencing on a subset of COVID-19-positive individuals was performed to identify the outbreak source. Finally, an outbreak control sustainability plan was formulated for future BHU outbreak resurgences. Results: We identified 35 HCWs and 8 inpatients who tested positive in the BHU between December 16, 2021, and January 17, 2022. We generated severe acute respiratory coronavirus virus 2 (SARS-CoV-2) genomes from 15 HCWs and all inpatients. Phylogenetic analyses revealed 3 distinct but genetically related clusters: (1) an HCW and inpatient outbreak likely initiated by staff, (2) an HCW and inpatient outbreak likely initiated by an inpatient visitor, and (3) an HCW-only cluster initiated by staff. Conclusions: Distinct transmission clusters are consistent with multiple, independent SARS-CoV-2 introductions with further inpatient transmission occurring in communal settings. The implemented outbreak control plan comprised of enhanced personal protective equipment requirements, limited socialization, and molecular surveillance likely minimized disruptions to patient care as a model for future pandemics.

2.
Nat Commun ; 15(1): 3374, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643200

ABSTRACT

Respiratory Syncytial Virus (RSV) is a leading cause of acute respiratory tract infection, with the greatest impact on infants, immunocompromised individuals, and older adults. RSV prevalence decreased substantially in the United States (US) following the implementation of COVID-19-related non-pharmaceutical interventions but later rebounded with abnormal seasonality. The biological and epidemiological factors underlying this altered behavior remain poorly defined. In this retrospective cohort study from 2009 to 2023 in Chicago, Illinois, US, we examined RSV epidemiology, clinical severity, and genetic diversity. We found that changes in RSV diagnostic platforms drove increased detections in outpatient settings post-2020 and that hospitalized adults infected with RSV-A were at higher risk of intensive care admission than those with RSV-B. While population structures of RSV-A remained unchanged, RSV-B exhibited a genetic shift into geographically distinct clusters. Mutations in the antigenic regions of the fusion protein suggest convergent evolution with potential implications for vaccine and therapeutic development.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Infant , Humans , United States/epidemiology , Aged , Retrospective Studies , Pandemics , COVID-19/epidemiology , Respiratory Syncytial Virus, Human/genetics
3.
Cell Rep Med ; 5(1): 101361, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38232695

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with enhanced transmissibility and immune escape have emerged periodically throughout the coronavirus disease 2019 (COVID-19) pandemic, but the impact of these variants on disease severity has remained unclear. In this single-center, retrospective cohort study, we examined the association between SARS-CoV-2 clade and patient outcome over a two-year period in Chicago, Illinois. Between March 2020 and March 2022, 14,252 residual diagnostic specimens were collected from SARS-CoV-2-positive inpatients and outpatients alongside linked clinical and demographic metadata, of which 2,114 were processed for viral whole-genome sequencing. When controlling for patient demographics and vaccination status, several viral clades were associated with risk for hospitalization, but this association was negated by the inclusion of population-level confounders, including case count, sampling bias, and shifting standards of care. These data highlight the importance of integrating non-virological factors into disease severity and outcome models for the accurate assessment of patient risk.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2/genetics , Molecular Epidemiology , Retrospective Studies , COVID-19 Testing
4.
Res Sq ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38168164

ABSTRACT

Respiratory Syncytial Virus (RSV) is a leading cause of acute respiratory tract infection, with greatest impact on infants, immunocompromised individuals, and older adults. RSV prevalence decreased substantially following the implementation of non-pharmaceutical interventions to mitigate the COVID-19 pandemic but later rebounded with initially abnormal seasonality. The biological and epidemiological factors underlying this altered behavior remain poorly defined. In this retrospective cohort study, we examined RSV epidemiology, clinical severity, and genetic diversity in the years surrounding the COVID-19 pandemic. We found that changes in RSV diagnostic platforms drove increased detections in outpatient settings after 2020 and that hospitalized adults with RSV-A were at higher risk of needing intensive care than those with RSV-B. While the population structure of RSV-A remained unchanged, the population structure of RSV-B shifted in geographically distinct clusters. Mutations in the antigenic regions of the fusion protein suggest convergent evolution with potential implications for vaccine and therapeutic development.

5.
bioRxiv ; 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38168346

ABSTRACT

Pathogen clearance and resolution of inflammation in patients with pneumonia require an effective local T cell response. Nevertheless, local T cell activation may drive lung injury, particularly during prolonged episodes of respiratory failure characteristic of severe SARS-CoV-2 pneumonia. While T cell responses in the peripheral blood are well described, the evolution of T cell phenotypes and molecular signatures in the distal lung of patients with severe pneumonia caused by SARS-CoV-2 or other pathogens is understudied. Accordingly, we serially obtained 432 bronchoalveolar lavage fluid samples from 273 patients with severe pneumonia and respiratory failure, including 74 unvaccinated patients with COVID-19, and performed flow cytometry, transcriptional, and T cell receptor profiling on sorted CD8+ and CD4+ T cell subsets. In patients with COVID-19 but not pneumonia secondary to other pathogens, we found that early and persistent enrichment in CD8+ and CD4+ T cell subsets correlated with survival to hospital discharge. Activation of interferon signaling pathways early after intubation for COVID-19 was associated with favorable outcomes, while activation of NF-κB-driven programs late in disease was associated with poor outcomes. Patients with SARS-CoV-2 pneumonia whose alveolar T cells preferentially targeted the Spike and Nucleocapsid proteins tended to experience more favorable outcomes than patients whose T cells predominantly targeted the ORF1ab polyprotein complex. These results suggest that in patients with severe SARS-CoV-2 pneumonia, alveolar T cell interferon responses targeting structural SARS-CoV-2 proteins characterize patients who recover, yet these responses progress to NF-κB activation against non-structural proteins in patients who go on to experience poor clinical outcomes.

6.
Viruses ; 14(11)2022 11 16.
Article in English | MEDLINE | ID: mdl-36423141

ABSTRACT

Global SARS-CoV-2 genomic surveillance efforts have provided critical data on the ongoing evolution of the virus to inform best practices in clinical care and public health throughout the pandemic. Impactful genomic surveillance strategies generally follow a multi-disciplinary pipeline involving clinical sample collection, viral genotyping, metadata linkage, data reporting, and public health responses. Unfortunately, current limitations in each of these steps have compromised the overall effectiveness of these strategies. Biases from convenience-based sampling methods can obfuscate the true distribution of circulating variants. The lack of standardization in genotyping strategies and bioinformatic expertise can create bottlenecks in data processing and complicate interpretation. Limitations and inconsistencies in clinical and demographic data collection and sharing can slow the compilation and limit the utility of comprehensive datasets. This likewise can complicate data reporting, restricting the availability of timely data. Finally, gaps and delays in the implementation of genomic surveillance data in the public health sphere can prevent officials from formulating effective mitigation strategies to prevent outbreaks. In this review, we outline current SARS-CoV-2 global genomic surveillance methods and assess roadblocks at each step of the pipeline to identify potential solutions. Evaluating the current obstacles that impede effective surveillance can improve both global coordination efforts and pandemic preparedness for future outbreaks.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2/genetics , Genomics , Pandemics/prevention & control , Public Health
7.
Ther Adv Infect Dis ; 9: 20499361221128091, 2022.
Article in English | MEDLINE | ID: mdl-36225856

ABSTRACT

Respiratory syncytial virus (RSV) is one of the most common etiological agents of global acute respiratory tract infections with a disproportionate burden among infants, individuals over the age of 65, and immunocompromised populations. The two major subtypes of RSV (A and B) co-circulate with a predominance of either group during different epidemic seasons, with frequently emerging genotypes due to RSV's high genetic variability. Global surveillance systems have improved our understanding of seasonality, disease burden, and genomic evolution of RSV through genotyping by sequencing of attachment (G) glycoprotein. However, the integration of these systems into international infrastructures is in its infancy, resulting in a relatively low number (~2200) of publicly available RSV genomes. These limitations in surveillance hinder our ability to contextualize RSV evolution past current canonical attachment glycoprotein (G)-oriented understanding, thus resulting in gaps in understanding of how genetic diversity can play a role in clinical outcome, therapeutic efficacy, and the host immune response. Furthermore, utilizing emerging RSV genotype information from surveillance and testing the impact of viral evolution using molecular techniques allows us to establish causation between the clinical and biological consequences of arising genotypes, which subsequently aids in informed vaccine design and future vaccination strategy. In this review, we aim to discuss the findings from current molecular surveillance efforts and the gaps in knowledge surrounding the consequence of RSV genetic diversity on disease severity, therapeutic efficacy, and RSV-host interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...